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STABILITY OF A VISCOELASTIC ROD ON DYNAMIC LOADING 

U. Akbarov, F. B. Badalov, 
and Kh. Eshmatov 

UDC 539.3 

There are fairly numerous papers on the dynamic loading in the elastic range for rods, 
which have been surveyed in [i, 2]; however, comparatively little is known about the dynamic 
stability of rods on the viscoelastic range. 

Here we show that one can examine the dynamic stability of such a rod under increasing 
compression from nonlinear integrodifferential equations containing variable coefficients, 
which can be solved numerically by means of quadratures. We consider how the major factors 
affect the behavior. 

i. Many aspects of nonlinear oscillations and dynamic stability can be considered by 
means of nonlinear integrodifferential equations with variable coefficients [3-7] for rods 
and beams composed of composite materials with viscoelastic behavior: 

Th-cm~ [ t - -  ~ P  ( )1 Th=Xh t, T~ . . . . .  T~. S q~ (t, T, T~ (T) , . . . ,  TN (T))dT , 
o ( i . i )  

Th(0) = To~, ~v~(0) = fo~ ,  k = I . . . . .  N ,  

in which T k = Tk(t) are time functions to be determined, P, Xk, and ~h are given continuous 
functions in the argument range, and w k =, ~k = consto 

A numerical method has been proposed [8, 9] based on the quadrature formulas for inte- 
grodifferential equations; here that method is extended to (I.i), for which the system is 
written in integral form. We put t = tm, t m = mh (h = const, m = i, 2,...) and replace the 
integrals by certain quadrature formulas to get a recurrent formula for Tmk = Tk(tm): 

~ho)~P~T~h + 
O~ k 

r ~ O  

-7- X h  tr, Trz, �9 Trx, s qJh �9 "', 
,=0 ( 1 . 2 )  

m = 1 , 2 ,  . . . , k ~ t  . . . . .  N 

in which A(r k) ,  B~ (k) are numerical  c o e f f i c i e n t s  independent of  the  form of  the  integrand 
f u n c t i o n s  and  w h i c h  t a k e  v a r i o u s  v a l u e s  i n  a c c o r d a n c e  w i t h  t h e  q u a d r a t u r e  f o r m u l a s  [ 1 0 ] ,  

Tashkent. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 4, pp. 
153-157, July-August, 1992. Original article submitted February 17, 1989; revision sub- 
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The basis for this method has been given in [11]; the error of the method is that ob- 
tained from the use of the quadrature formulas and has the same order of smallness with re- 

spect to the interpolation step. 

2. We consider a viscoelastic rod hinge-attached at the ends and subject to a compres- 
sive force P that varies in time t: P = P(t). We assume that the rod has an initial de- 
flection u 0 = u0(x) and that the cross section is constant over the length, 

The relation between the stress o and strain ~ is taken as 
t 

= ~ (1 - n*) (~ + w"), n * ~  = J R (t - ~) ~ (~) d, ,  
0 

i n  which  E i s  t h e  i n s t a n t a n e o u s  e l a s t i c  m o d u l u s ,  R ( t )  t h e  r e l a x a t i o n  k e r n e l ,  and ~ t h e  non-  
l i n e a r i t y  c o e f f i c i e n t ,  wh ich  i s  d e p e n d e n t  on t h e  p h y s i c a l  p r o p e r t i e s  o f  t h e  m a t e r i a l .  

We t a k e  t h e  s t r a i n  on t h e  B e r n o u l l i - E u l e r  a s s u m p t i o n  as  e = - z 3 2 ( u  - u 0 ) / ~ x  2 [u = 
u ( x ,  t ) ,  t h i s  b e i n g  t h e  t o t a l  t r a n s v e r s e  d e f l e c t i o n ,  and z t h e  d i s t a n c e  f rom a p o i n t  i n  t h e  
c r o s s  s e c t i o n  t o  t h e  n e u t r a l  a x i s ] .  

Wi th  t h e s e  a s s u m p t i o n s ,  t h e  d i f f e r e n t i a l  e q u a t i o n  f o r  t h e  c u r v e d  a x i s  o f  t h e  rod  i s  
[1 ,  4] 

(t" 02u 02u 0 4 ( u - % )  q - P , ) ~ q -  __=/_3yEJ I ( i _ R , ) •  E J  (t -- R*) Ox ~ m Ote 

( s  %~ ( 2 . 1 )  X 2 cOx= Ox a 

i n  which  EJ i s  t h e  b e n d i n g  r i g i d i t y ,  m t h e  mass  p e r  u n i t  l e n g t h ,  J ,  = ~ztdF, F t h e  c r o s s -  
sectional area, and f the additional static load. F 

We write the solution to (2.1) satisfying the boundary conditions as 

N N 

u(x ,  t ) =  ~ T ~ ( t ) s i n ~  --, uo(x ) = ~ Toksin kz'--f-~ (2.2) l 
h:l h=l 

in which l is the rod length; we substitute (2.2) into (2.1) and perform the Bubnov-Galerkin 
procedure to get a system of nonlinear integrodifferential equations for T k = Tk(t): 

p (t)] k~2  4%! 
Th -~- k2(o2 k2 (J- - -  R*) - -  --ffe-e ] Th ~ (1 - -  R*) Tok q- mk~ 

__ - ( f  " a ~ a h ~ i i ( t _ _ R , ) ( T  __To~)(Ti_ToO(Tj__Toj) ,  k = t , . . . , N ' .  ( 2 . 3 )  
n , i , j= l  

1 / ' E J  / n ,  4 
H e r e  Pe i s  t h e  R u l e r  c r i t i c a l  l o a d ,  co = V - ~ - [ 7 - )  i s  t h e  f r e q u e n c y  o f  t h e  f u n d a m e n t a l  o s c i l -  

l a t i o n  o f  t h e  r o d ,  and ct k i s  1 i f  k i s  odd and 0 i f  k i s  even ;  
a ~ i j  = n2i2]2[--2i](5~-~§ + 5~-h- i - j  + 6,-k+z-j  j r  

~-- 5,~_~-i+ j -- 5rt+k-~-j -- 5n+/~+i-j -- (~n+ ~.-i+j) ~-- ]2((~n-k+.f-h ~- ~n-i-j+~-- 

for/= 0; 
--5,~-i+ :+ h -  5 ~ - i - : - h -  5~+ i + : - k -  5~+ i-j+k q-5~+ i-:-h)];  5i={~ for  /=~0. 

We consider the case where P(t) increases in proportion to time; let P(t) =cFt, in 
which c is the rate of change. We introduce dimensionless quantities into (2.3): 

7 ' i ' ]/S-g Pc' i~zm ' 4J 

and r e t a i n  t h e  p r e v i o u s  s y m b o l s  t o  g e t  

A_ 4au 
i Tk __ kS [t* __ k ~ ( t - B * ) l T u = k  ~ ( l - R * ) T 0 h  , ~ f - -  
S* 

N 

- ~  ~ ak,,~(t - R*)(T,~ - -  To,O(T~- ToO(T~-  To~), ( 2 . 4 )  
n , i , j= l  

T~(O) = To~, T~(O) = To~, k = 1 . . . . .  N .  
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5/  
r r 

~'=P'/Pe 

Here i = JJ/---F is the radius of inertia of the cross section, S r = Pe3(~vE/cl) 2 the dimension- 
less loading rate parameter, Pe = Pe/EF the dimensionless Euler load parameter, v = s the 
speed of sound in the material, and p the density. 

We thus have a Cauchy problem for the dimensionless unknowns Tk, k = 1 .... N; (2.4) is a 
particular case of (i.i). A numerical method is used to integrate (2.4) within wide ranges 
for the mechanical parameters as proposed in Sec. i; (1.2) with the Koltunov-Rzhanitsyn 
kernel R(t) = Ata-lexp(-$t), ~ = 0.25, $ = 0.05 takes the form 

- m - 1  14%f Toh . ~ . S* 
T.,.k = To~ c o s  ~.~t,~ + ~ s i n  ~hr~ + 7.k ~. .o= A~ L- -~-  + k~t~T~ - -  

" 2 k4A B. (T~_. h --/'ok) x - - ?  7~ a~,,o(T~.,~ - -  To ,~ l (T~ i -  ToO (T~j - -  Toj) + T "' 
~ , i , ] = l  s = O  

.~ ( 2 . 5 )  r 

x ~xp ( -  ~t,) + v~ ~ a . . j  ~ B, (r . . . . .  - ro,O (r,._.,~ - too (r,._. j - ro~) x 
n , i  , j =  1 s=O 

in which 

x e x p ( - - ~ & ) } s i n ~ . h ( t . , - - t . ) ,  k = t  . . . . .  N ,  r e = i , 2 ,  . . . ,  

~h = P f S * k 2 ;  A o  = h/2, A~ = h ,  r = 1 . . . . .  m -- t ;  Bo = h a ~ 2 ,  B .  = 

= h ~ [ t  ~ - -  ( r  - -  1 ) ~ ] I 2 ,  B~ = h~[(s + t )  ~ - -  (s - -  t ) ~ ] / 2 ,  s = t . . . . .  r - -  t .  

An ES-1061 was used to compute Tmk = Tk(t m) from (2.5); Figs 1-6 show the results. By 
analogy with [2, 12], we take the criterion defining the critical time and thus the critical 
load as the condition that the deflection should not exceed the radius of inertia of the 
cross section. 

Figures 1 and 2 show results for S* = 0, i, T0k = 10 -3 , f = 0, ~ = 0; the abscissa is 
t*, which is the ratio of the variable compressive force to the Euler load, while the ordi- 
nate is the dimensionless deflection sagitta T k. Curves 1-3 correspond to k = i, 2, and 3, 
while the solid and dashed lines in Fig. 1 correspond to the elastic case (A = 0) and the 
viscoelastic case (A = 0.05). By analogy with the elastic case [2], there is a marked in- 
crease in the deflection when the rod bends in two half-waves (k = 2). To judge from curve 
2, deflection equal to the radius of inertia of the cross section is attained with Pcr= 
9.06Pe, while in the elastic case Pcr = 9"6Pc, which shows that the critical load is reduced 
when the viscoelastic parameters are introduced. 

Calculations were also performed for the viscosity coefficients A = 0.03; 0.08; 0.i 
(Fig. 2); in these cases, the dynamic coefficient K d is the ratio of the dynamic critical 
load to the static (Euler) one, the values being respectively 9.3, 8.76, and 8.58. The 
critical load is reduced as the viscosity coefficient increases. 

Figure 3 was constructed with T0k = 10 -3 , f = 0, u = 0 for various S*; we give curves 
for the k for which the increase in the deflection is rapid. K d increases as S* decreases, 
and for S* = i, the critical number of half-waves k is 2, in contrast to the elastic case, 
where k = i. 

Figure 4 indicates the effects of an initial deflection in dynamic loading; we give the 
critical cruves T k for S* = 0,i, f = 0, ~ = 0, k = 2 for successively decreasing T0k in the 
range from 10 -I to 10 -4 For initial deflection sagittas T0k = i0 -l, 10 -2 , 10 -3 , 10 -4 (lines 
1-4), K d = 5.1, 7.2, 9.1, 10.5. 
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We examined the effect of an additional static transverse load on the behavior (Fig. 5); 
k = 1 for T0k = 10 -2 , ~ = 0, S* = 0, 1 and f ~ 0, while k = 2 for f = 0. The transverse load 
tends to reduce the occurrence of higher instability forms. The K d for f = O, 0.025, 0.05, 
0.I, i, 1.5 (lines 1-6) are correspondingly 9.06, 8.7, 7.68, 6.96, 3.66, 3.12. 

We examined how physical nonlinearity affected the behavior. Figure 6 (T0k = 10 -3 , 
S* = 0, i, f = 0) gives T k curves for ~ = 0.i, 0.5, i, with correspondingly K d = 9.2, 12.2, 
12.4. For y ~ 0.I, the solutions in the linear and nonlinear cases are similar, while for 

> 0.i, they differ substantially, the difference being about 30%, for example, for y = 0.5. 
The critical loads and times are increased by incorporating the nonlinearity in the material. 
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